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Long-range self-affine correlations in a random soliton gas
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The random sine-Gordon chain experiences a sharp crossover to an ordered state associated with the acti-
vation of a soliton gas. The spatial coherence of the stationary regimes has three well-defined scaling behav-
iors. At larger scales there is no correlation, reflecting the independence between the different local structures
in the chain. In this paper we introduce a different potential that produces solitons that exhibit long-range
interactions. We show that a gas of such solitons can extend self-affinity to all scales.
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PACS numbgs): 03.40.Kf, 05.40+j, 61.43.Hv, 68.35.Ct

For a variety of systems, the interplay between nonlinearsize of the system is increased, whereas the self-affine re-
ity and strong external noise results in fascinating noisegions preserve their extensiof32]. We have verified that
induced transitions to a more structured behayior3]. In  the plateau does not depend upon boundary conditions. For
particular, roughening transitions in random media havehe transient, the common dynamic expongft{(0.9) has
been the object of many studies, due to the interdisciplinaryeen calculated from flat initial conditions for all these re-
aspects of the probleif]. gimes. This last result reveals that the surface grows faster

In this paper we study noise-induced roughening transithan is predicted by the KPZ model and has been related
tions for random soliton gases generated by Klein-Gordomith the global dynamics characteristic of the Sneppen uni-
equations: versality class[33]. The dynamics of the random sine-

Gordon model is not capable of eliminating disorder at larger

VZp— ¢yt G(d)=ad—R(X,t). (1)  scales(for which zero-roughening exponents take plae-

cause this is precisely generated by the different independent
Here, G(¢)=— dU(¢p)/d¢, U(¢) is a nonlinear function and coherent behaviors at small scales. In the random sine-
that possesses two or more minima d&(c,t) is spatiotem- Gordon model, the interactions between the solitons decay
poral white noise that can represent thermal driving. Manyexponentially[ F~exp(—d)] and therefore larger scales ex-
systemg2,5-2§ are described by the Klein-Gordon equa- hibit no correlation. The overdamped regiltie presence of
tions including charge density wavg$1,12,24, Josephson a constant driving forgeof the random sine-Gordon model
junctions[2,20—23, structural phase transitiof5—8|, crys- has been the object of theoretical and numerical studies
tal growth[17,28], polymers[9,10,19, escaping processes [17,36,31.
[2], chain dynamic$29], chemical reactiong2], proton con- In this paper we present an alternative model, for which
ductivity, macromolecules, and hydrogen-bond chainsself-affinity extends to all scales. This alternative model
[13,14. One of the more-studied, particular cases of @g|. takes advantage of the fact that, for a potential with non-
is the random sine-Gordon equatiofin this case, Morse critical points and whose first term different from zero
G(¢)=—sin(¢)], which models polynuclear crystal growth in its Taylor expansion around the minima is of order 2
if the solution ¢(x,t) is considered the height of a one- (i.e.,U(¢$)~ ¢2", n>1), the interaction force decreases with
dimensional surfacfl7]. This model exhibits noise-induced distance ag~d2"(1~" [18]. In this case, solitons possess
pattern formatior{30] and the random soliton gas has beenlong-range interactions and the dynamics of Hq.presents
related with the roughening] and dynamic exponents outstanding differences with respect to classic sine-Gordon:
(B=¢12) [31-33. Also, its dynamics has been related with the KPZ scaling extends to higher scales, whereas the non-
the Kardar-Parisi-Zhan@KPZ) [34] and Sneppef35] uni-  KPZ slope preserves its range.
versality classes. Before the onset of the noise-induced tran- Previous work§15,18 have shown that Eq1) has solu-
sition to the soliton bearing regime, the roughening exponentions of the kink and anti-kink types when the potential
is zero. After the activation of solitons, there is a very inter-U(¢) possesses two or more minima. For=1, the
esting crossover from non-KPZ behaviaf~0.7—0.8) to  asymptotic behavior of the solitons is exponential and the
KPZ behavior ¢~0.5); additionally, for sufficiently large interaction forceF between two solitons decays exponen-
scales, a crossover to a zero-roughening exponent takdéiglly with the distanced [18]. In contrast, whem>1, the
place. The/~0 plateau is more sharply defined when thebehavior forx—« is ¢—¢j~xk (here,k=1/1—n and ¢;
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FIG. 1. Stationary regimes for short- and long-range models FIG. 2. Overdamped regimes for short- and long-range models
(@=0.252): logg) vs logl) for n=40 (upper curvg andn=1 (@=25.2): logp) vs log) for n=40 (upper curvg and n=1
(lower curve. There is no scale at the vertical axis because we havélower curve.
shifted curves in order to accomodate them in one figure.

of the spatiotemporal profilg o(L,t)~L¢] for the low-

are the values of two contiguous minimig=1,2) and the dissipation regime ¢=0.252). The lower curve of Fig. 1
interaction force decays &-~d"(1-"_ Notice that thisisa corresponds to the stationary regime for the random sine-
power-law behavior. Gordon caser(=1, «=0.252); this curve reveals two dif-

Consider the model given by the following dimensionlessferent scaling behaviors(L)~L¥, in particular, a KPZ be-
equations: havior ({~0.50) for intermediate scales. For small length
scales{=0.826+0.002, whereag=0.493+ 0.001 for inter-
mediate scales. For larger scales a crossover to a zero-

bxx— Pu—Nsing(1—cosp)" *=ad—R(x,t), (2

(R(x,1))=0, (€)
(R(X,)R(x",t"))=2D8(t—t")5(x—x"). (4)
Here,U(¢) = (1— cosp)"=2sirt"(¢/2). This potential can 11.0

describe an anharmonic oscillator with a particle moving in a
potential of thin and periodic walls, such that the particle
almost does not interact with the walls unless it is very close
to them[38]. The stability of the particle in the created wells 105
has a marginal character because these are degenerate fixed
points of the corresponding dynamical system. Considering a
chain of these oscillators can lead to an equation like(By.
which can be used as a growth model in periodic media with
marginal stability. Forn=1 Eq. (2) reduces to the sine-
Gordon equation and fan>1 its soliton solutions exhibit
power-law interactions. This model can be associated with
recently observed algebraic solitons with long-range interac-
tion and power-law behaviof27,39-43. We use flat initial
conditions| ¢(x,0)= ¢;(x,0)=0] and open-boundary condi- 9.0
tions[ ¢,(0t) = ¢,(l,t)=0]. The parameters of our simula-
tions areAx=0.039,At=0.035,1 = 320, and the variance of oy
the noise is 3,333.8which is well above the onset of the 05 10 15 20 25 30 35 40
random soliton gas we discretize the equation into 8192 : log, ¢
points.

In Fig. 1, we present the scaling behavior of the length of FIG. 3. Transient regime for the long-range model: tegy¢s
the ensemble average of the standard deviation of the heighig(t) for «=0.252 andh=40.
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roughening exponent takes place. The upper curve in Fig. &éomposition for the overdamped regime of the long-range
corresponds ta=40 («=0.252). In contrast with the ran- soliton gas. Logarithmic scal@pase 10 allows for apprecia-
dom sine-Gordon case, the surface for 40 exhibits only  tion of pitchfork bifurcations associated with fractal order.
two self-affine regimes, the anomalou§=(0.818+0.002) We must stress that in the neighborhood of the point
and the KPZ-like {=0.4977-0.0004). There is statistical ¢=0 (as well as in the neighborhood of the other minjma
fractality (we average over 5000 realizations for each sizehe potentialU(¢) (for n>1) behaves as a flat well in which
L) at all the scales of the system, even for the larger oneg(¢)~0 for all the points in the neighborhood. Equati@
that the random sine-Gordon equation is not able to order. 5 n>1 has no mass term. This fact leads to power-law
Figure 2 is analogous to 1, but for a higher dissipationyehayiors[18,27,49. Something similar occurs in other
case (=2.52). We obtainf/=0.490+0.002 for then=1 1,45 for which self-organized criticality has been reported.
case and’=0.481+0.001 for then=40 case. Note that for Moreover, Eq.(2) possesses a nonlinearity i, such that

n=40 there is no plateau. . . o .
. . . G(¢) changes sign, allowing the conditions for the existence
Dynamic scaling theor}4] predicts that the ensemble av- of kink and anti-kink solutions. All these features makes the

erage of the standard deviation of the spatiotemporal prOﬁI?ong-range Klein-Gordon model special: it bears solitons that

satisfies the relatioor(t,L)=L¢f(t/L?). Fort>L? the sys- . :
tem achieves the stationary regime angt,L)=o(L)~L¢ interact with long-range forces, anq the system, when forced
[i.e.,f(x)~consi. For the transienttL?), the system veri- at random, presents fractal beha_wor at all scales. Up to our
fies the relations(t,L) = o(t)~t{?=t# [i.e., f(x) ~x¥Z]. A knowledge, there is no system with all these features present
high dynamic exponentd= ¢/z) indicates that the progress at Once. _ _ o
towards the temporally stable regime is realized very fast, NOté that the numerical experiments were inspired by an
whereas a very low dynamic exponent reveals a slow satpxact theoreu;al result_ concerning t_he interaction force be-
ration for the system. In Fig. 3, we plot lpg(L,t)] versus tween the solitons, whiclwhen applied to our modekl-
log(t) for n=40 anda=0.252(we average over 500 realiza- lowed the prediction of the existence of power-law behaviors
tions from flat initial conditions The three curves corre- in the system. The same theoretical considerations permitted
spond to small, intermediate, and large lengths in the chairs to foresee strong differences between the casek and
We find that, for sufficiently small values df the three n>1.
curves give a scaling(L,t)~t# with 8=1.19+0.03. No- The numerical results are in agreement with these consid-
tice thatB>1 indicates a violent dynamicalmost ballistig. erations. Besides, we used two differéand independejt
As the system evolves, the curves begin to separate and forvestigation tools (namely, roughening exponents and
the shortest lengths the stationary regime is reached earlywavelet transformthat showed noncontradictory results.
For L corresponding to larger scales, the dynamic exponent Equation (1), with dimensionD>1 and the long-range
exhibits a crossover t=0.26+0.01. Fom=1 we find, for  interaction properties that we have already presented, is a
small values ot, a scaling withg=0.952+0.008. very promisingmodel systerrwith applications in a variety

We resort to the wavelet tranform analyBiel] in orderto  of physical systems. This model system should exhibit struc-
unveil the structures present in tifgx,t) profiles. Figure 4 tyres at all scales due to the formation of spontaneous topo-
presents the wavelet decomposition of a stationary state prgggical defects with long-range interactions, which can create
file for n=40. Herea andb are the scale and position pa- pqnd states, clusters of bound states, clusters of clusters,
rameters, respectlvely; we had 9hqsen the so-called Mexica&}. |n the same manner, a potential in which topological
hat as analyzing wavel¢d4]. This figure reveals the pres- jotects possess such behavior can be constructed for other
ehnce of CIO he(;ent structures fat ﬂlfi‘ere_nrt] S(r:]ales. If we Irepe%tquations, e.g., the complex Ginzburg-Landau equiéh
the wavelet decomposition fan=1 with the same co O " Models with these properties have been intensively searched

a relatively moderate growth of the surface for lower resolu-ﬁ47_4q due to its importance in the description of complex

. : o namics, in the presen f vorti iral wav mi
tion (higher scales whereasn=40 exhibits huge values. dynamics, in the presence of vortices, spiral waves, cosmic

; . . strings, etc.
The existence of an increased coherence in the geometry OF g

the surface for higher scales for the=40 case is evident. This work has been partially supported by Consejo
The wavelet transform also reveals the local self-Nacional de Investigaciones Cidiitas y Tecnolgicas
similarity of fractal objects. Figure 5 shows the wavelet de-(CONICIT) under Project S1-2708.
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