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Long-range self-affine correlations in a random soliton gas
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The random sine-Gordon chain experiences a sharp crossover to an ordered state associated with the acti-
vation of a soliton gas. The spatial coherence of the stationary regimes has three well-defined scaling behav-
iors. At larger scales there is no correlation, reflecting the independence between the different local structures
in the chain. In this paper we introduce a different potential that produces solitons that exhibit long-range
interactions. We show that a gas of such solitons can extend self-affinity to all scales.
@S1063-651X~97!03206-6#

PACS number~s!: 03.40.Kf, 05.40.1j, 61.43.Hv, 68.35.Ct
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For a variety of systems, the interplay between nonline
ity and strong external noise results in fascinating noi
induced transitions to a more structured behavior@1–3#. In
particular, roughening transitions in random media ha
been the object of many studies, due to the interdisciplin
aspects of the problem@4#.

In this paper we study noise-induced roughening tran
tions for random soliton gases generated by Klein-Gord
equations:

¹2f2f tt1G~f!5af t2R~x,t !. ~1!

Here,G(f)52 ]U(f)/]f, U(f) is a nonlinear function
that possesses two or more minima andR(x,t) is spatiotem-
poral white noise that can represent thermal driving. Ma
systems@2,5–28# are described by the Klein-Gordon equ
tions including charge density waves@11,12,24#, Josephson
junctions@2,20–22#, structural phase transitions@5–8#, crys-
tal growth @17,28#, polymers@9,10,19#, escaping processe
@2#, chain dynamics@29#, chemical reactions@2#, proton con-
ductivity, macromolecules, and hydrogen-bond cha
@13,14#. One of the more-studied, particular cases of Eq.~1!
is the random sine-Gordon equation@in this case,
G(f)52sin(f)#, which models polynuclear crystal growt
if the solution f(x,t) is considered the height of a one
dimensional surface@17#. This model exhibits noise-induce
pattern formation@30# and the random soliton gas has be
related with the roughening (z) and dynamic exponent
(b5z/z) @31–33#. Also, its dynamics has been related wi
the Kardar-Parisi-Zhang~KPZ! @34# and Sneppen@35# uni-
versality classes. Before the onset of the noise-induced t
sition to the soliton bearing regime, the roughening expon
is zero. After the activation of solitons, there is a very int
esting crossover from non-KPZ behavior (z;0.720.8) to
KPZ behavior (z;0.5); additionally, for sufficiently large
scales, a crossover to a zero-roughening exponent t
place. Thez;0 plateau is more sharply defined when t
551063-651X/97/55~6!/7691~5!/$10.00
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size of the system is increased, whereas the self-affine
gions preserve their extensions@32#. We have verified that
the plateau does not depend upon boundary conditions.
the transient, the common dynamic exponent (b;0.9) has
been calculated from flat initial conditions for all these r
gimes. This last result reveals that the surface grows fa
than is predicted by the KPZ model and has been rela
with the global dynamics characteristic of the Sneppen u
versality class@33#. The dynamics of the random sine
Gordon model is not capable of eliminating disorder at lar
scales~for which zero-roughening exponents take place! be-
cause this is precisely generated by the different indepen
and coherent behaviors at small scales. In the random s
Gordon model, the interactions between the solitons de
exponentially@F;exp(2d)# and therefore larger scales e
hibit no correlation. The overdamped regime~in presence of
a constant driving force! of the random sine-Gordon mode
has been the object of theoretical and numerical stud
@17,36,37#.

In this paper we present an alternative model, for wh
self-affinity extends to all scales. This alternative mod
takes advantage of the fact that, for a potential with no
Morse critical points and whose first term different from ze
in its Taylor expansion around the minima is of order 2n
~i.e.,U(f);f2n, n.1), the interaction force decreases wi
distance asF;d2n/(12n) @18#. In this case, solitons posses
long-range interactions and the dynamics of Eq.~1! presents
outstanding differences with respect to classic sine-Gord
the KPZ scaling extends to higher scales, whereas the n
KPZ slope preserves its range.

Previous works@15,18# have shown that Eq.~1! has solu-
tions of the kink and anti-kink types when the potent
U(f) possesses two or more minima. Forn51, the
asymptotic behavior of the solitons is exponential and
interaction forceF between two solitons decays expone
tially with the distanced @18#. In contrast, whenn.1, the
behavior forx→` is f2f j;xk ~here,k51/12n and f j
7691 © 1997 The American Physical Society
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are the values of two contiguous minima;j51,2) and the
interaction force decays asF;d2n/(12n). Notice that this is a
power-law behavior.

Consider the model given by the following dimensionle
equations:

fxx2f tt2nsinf~12cosf!n215af t2R~x,t !, ~2!

^R~x,t !&50, ~3!

^R~x,t !R~x8,t8!&52Dd~ t2t8!d~x2x8!. ~4!

Here,U(f)5(12cosf)n[2sin2n(f/2). This potential can
describe an anharmonic oscillator with a particle moving i
potential of thin and periodic walls, such that the partic
almost does not interact with the walls unless it is very clo
to them@38#. The stability of the particle in the created wel
has a marginal character because these are degenerate
points of the corresponding dynamical system. Considerin
chain of these oscillators can lead to an equation like Eq.~2!,
which can be used as a growth model in periodic media w
marginal stability. Forn51 Eq. ~2! reduces to the sine
Gordon equation and forn.1 its soliton solutions exhibit
power-law interactions. This model can be associated w
recently observed algebraic solitons with long-range inter
tion and power-law behaviors@27,39–43#. We use flat initial
conditions@f(x,0)5f t(x,0)50# and open-boundary cond
tions @fx(0,t)5fx( l ,t)50#. The parameters of our simula
tions areDx50.039,Dt50.035,l5320, and the variance o
the noise is 3,333.3~which is well above the onset of th
random soliton gas!; we discretize the equation into 819
points.

In Fig. 1, we present the scaling behavior of the length
the ensemble average of the standard deviation of the he

FIG. 1. Stationary regimes for short- and long-range mod
(a50.252): log(s) vs log(L) for n540 ~upper curve! and n51
~lower curve!. There is no scale at the vertical axis because we h
shifted curves in order to accomodate them in one figure.
s
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of the spatiotemporal profile@s(L,t);Lz# for the low-
dissipation regime (a50.252). The lower curve of Fig. 1
corresponds to the stationary regime for the random s
Gordon case (n51, a50.252); this curve reveals two dif
ferent scaling behaviorss(L);Lz, in particular, a KPZ be-
havior (z;0.50) for intermediate scales. For small leng
scales,z50.82660.002, whereasz50.49360.001 for inter-
mediate scales. For larger scales a crossover to a z

ls

e

FIG. 2. Overdamped regimes for short- and long-range mod
(a525.2): log(s) vs log(L) for n540 ~upper curve! and n51
~lower curve!.

FIG. 3. Transient regime for the long-range model: log(s) vs
log(t) for a50.252 andn540.
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FIG. 4. ~Color! Wavelet de-
composition for the long-range
model (a50.252 andn540).

FIG. 5. ~Color! Wavelet de-
composition for the long-range
model (a525.2 and n540).
Logarithmic scale~base 10! re-
veals pitchfork bifurcations.
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roughening exponent takes place. The upper curve in Fi
corresponds ton540 (a50.252). In contrast with the ran
dom sine-Gordon case, the surface forn540 exhibits only
two self-affine regimes, the anomalous (z50.81860.002)
and the KPZ-like (z50.497760.0004). There is statistica
fractality ~we average over 5000 realizations for each s
L) at all the scales of the system, even for the larger o
that the random sine-Gordon equation is not able to orde

Figure 2 is analogous to 1, but for a higher dissipat
case (a52.52). We obtainz50.49060.002 for then51
case andz50.48160.001 for then540 case. Note that fo
n540 there is no plateau.

Dynamic scaling theory@4# predicts that the ensemble a
erage of the standard deviation of the spatiotemporal pro
satisfies the relations(t,L)5Lz f (t/Lz). For t@Lz, the sys-
tem achieves the stationary regime ands(t,L)5s(L);Lz

@i.e., f (x);const#. For the transient (t!Lz), the system veri-
fies the relations(t,L)5s(t);tz/z5tb @i.e., f (x);xz/z#. A
high dynamic exponent (b5z/z) indicates that the progres
towards the temporally stable regime is realized very fa
whereas a very low dynamic exponent reveals a slow s
ration for the system. In Fig. 3, we plot log@s(L,t)# versus
log(t) for n540 anda50.252~we average over 500 realiza
tions from flat initial conditions!. The three curves corre
spond to small, intermediate, and large lengths in the ch
We find that, for sufficiently small values oft, the three
curves give a scalings(L,t);tb with b51.1960.03. No-
tice thatb.1 indicates a violent dynamics~almost ballistic!.
As the system evolves, the curves begin to separate an
the shortest lengths the stationary regime is reached e
For L corresponding to larger scales, the dynamic expon
exhibits a crossover tob50.2660.01. Forn51 we find, for
small values oft, a scaling withb50.95260.008.

We resort to the wavelet tranform analysis@44# in order to
unveil the structures present in thef(x,t) profiles. Figure 4
presents the wavelet decomposition of a stationary state
file for n540. Herea andb are the scale and position pa
rameters, respectively; we had chosen the so-called Mex
hat as analyzing wavelet@44#. This figure reveals the pres
ence of coherent structures at different scales. If we rep
the wavelet decomposition forn51 with the same color
scales, we would observe a completely blue picture, show
a relatively moderate growth of the surface for lower reso
tion ~higher scales!, whereasn540 exhibits huge values
The existence of an increased coherence in the geomet
the surface for higher scales for then540 case is evident.

The wavelet transform also reveals the local se
similarity of fractal objects. Figure 5 shows the wavelet d
:
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composition for the overdamped regime of the long-ran
soliton gas. Logarithmic scale~base 10! allows for apprecia-
tion of pitchfork bifurcations associated with fractal order

We must stress that in the neighborhood of the po
f50 ~as well as in the neighborhood of the other minim!,
the potentialU(f) ~for n@1) behaves as a flat well in whic
U(f)'0 for all the points in the neighborhood. Equation~2!
for n.1 has no mass term. This fact leads to power-l
behaviors @18,27,45#. Something similar occurs in othe
models for which self-organized criticality has been report
Moreover, Eq.~2! possesses a nonlinearity inf, such that
G(f) changes sign, allowing the conditions for the existen
of kink and anti-kink solutions. All these features makes t
long-range Klein-Gordon model special: it bears solitons t
interact with long-range forces, and the system, when for
at random, presents fractal behavior at all scales. Up to
knowledge, there is no system with all these features pre
at once.

Note that the numerical experiments were inspired by
exact theoretical result concerning the interaction force
tween the solitons, which~when applied to our model! al-
lowed the prediction of the existence of power-law behavi
in the system. The same theoretical considerations perm
us to foresee strong differences between the casesn51 and
n@1.

The numerical results are in agreement with these con
erations. Besides, we used two different~and independent!
investigation tools ~namely, roughening exponents an
wavelet transform! that showed noncontradictory results.

Equation ~1!, with dimensionD.1 and the long-range
interaction properties that we have already presented,
very promisingmodel system, with applications in a variety
of physical systems. This model system should exhibit str
tures at all scales due to the formation of spontaneous to
logical defects with long-range interactions, which can cre
bound states, clusters of bound states, clusters of clus
etc. In the same manner, a potential in which topologi
defects possess such behavior can be constructed for
equations, e.g., the complex Ginzburg-Landau equation@46#.
Models with these properties have been intensively searc
@47–49# due to its importance in the description of compl
dynamics, in the presence of vortices, spiral waves, cos
strings, etc.

This work has been partially supported by Conse
Nacional de Investigaciones Cientı´ficas y Tecnolo´gicas
~CONICIT! under Project S1-2708.
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